Abstract

The 6-phosphofructo-1-kinase (PFK) isozyme pools from brains of fetal, neonatal, young adult (3 months) and aged (30 months) rats were studied using chromatographic and immunological techniques. Also, the changing subunit composition of each isozyme pool was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis on 6% slab gels and by immunoblotting with subunit-specific antibodies. The total PFK activity increased over seven-fold during the 30 days following birth, and the L-type, M-type, and C-type subunits increased approximately 2-fold, 7-fold, and 24-fold, respectively. In the near-term fetal brain and early neonatal brain, the L-type and L-type subunits were the predominant forms and were present in approximately equal amounts. During the second week of postnatal brain maturation, the levels of the M-type and C-type subunit began to significantly increase. Consequently, during postnatal development, the isozyme pools switched from L-M-rich forms to M-C-rich forms. In aged brain relative to the young adult (3 months) brain, the 20% loss of total activity was associated with 27% and 18% losses of the M-type and C-type subunits, respectively. Examination of the regulatory properties of the various PFK isozyme pools revealed that at the low concentration of fructose-6-P and high level of ATP which are thought to occur in vivo, fructose-2,6-P 2 was required for measurable PFK activity. Further, as the proportion of C-type subunit increased during postnatal development, the isozyme pool became increasingly more sensitive to inhibition by ATP and exhibited decreased affinities for fructose-6-P and fructose-2,6-P 2. These results are compatible with the increased dependence on glucose as a source of energy during brain development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.