Abstract

It has been found that the alkaliphilic Gram-negative bacterium Pseudomonas alcaliphila AL15-21(T) produces a larger amount of soluble c-type cytochromes at pH 10.0 under air-limited condition than at pH 7.0 under high aeration. Cytochrome c-552 was confirmed as the major c-type cytochrome among three soluble c-type cytochromes in the strain. To understand the physiological function of cytochrome c-552, a P. alcaliphila AL15-21(T) cytochrome c-552 gene deletion mutant without a marker gene was constructed by electrotransformation adjusted in this study for the strain. The maximum specific growth rate and maximum cell turbidity of cells grown at pHs 7.0 and 10.0 under the high-aeration condition did not differ significantly between the wild-type and cytochrome c-552 deletion mutant strains. In the mutant grown at pH 10.0 under low-aeration condition, marked decreases in the maximum specific growth rate (40%) and maximum cell turbidity (25%) compared with the wild type were observed. On the other hand, the oxygen consumption rates of cell suspensions of the mutant obtained by the growth at pH 10 under low-aeration condition were slightly higher than that of the wild type. Considering the high electron-retaining ability of cytochrome c-552, the above observations could be accounted for by cytochrome c-552 acting as an electron sink in the periplasmic space. This may facilitate terminal oxidation in the respiratory system at high pH under air-limited conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.