Abstract

In our previous studies, Lactobacillus plantarum Y44 showed antioxidant activity and favorable gastric and intestinal transit tolerance. In the current study, we investigated the physiological function of L. plantarum Y44 based on an analysis of its genotype and phenotype. The complete genome of L. plantarum Y44 contained a single circular chromosome of 3,255,555 bp, with a GC content of 44.6%, and a single circular plasmid of 51,167 bp, with a GC content of 38.8%. The L. plantarum Y44 genome contained 3,293 genes including 3,112 protein coding sequences, 16 rRNAs, 66 tRNAs, 4 small (s)RNAs, and 95 pseudo genes. Lactobacillus plantarum Y44 could metabolize 24 different carbohydrate sources. Nineteen complete phosphoenolpyruvate-dependent sugar phosphotransferase system complex genes and intact Embden-Meyerhof-Parnas pathway and hexose monophosphate pathway enzyme genes, as well as abundant carbohydrate active enzyme genes, were identified in the L. plantarum Y44 genome. We also identified genes related to the biosynthesis of exopolysaccharide and surface proteins. Surface proteins played an important role in the L. plantarum Y44 adhesion to HT-29 cell monolayers, as evidenced by the removal of cell surface proteins leading to decreased adhesion capacity. The L. plantarum Y44 genome contained genes encoding chaperones, intracellular proteases, and 2-component systems, which were associated with the general stress response. Genes encoding bile salt hydrolase, F0F1-ATPase, Na+/H+-antiporter, H+/Cl- exchange transporter, cyclopropane-fatty acyl-phospholipid synthase, and alkaline shock protein were identified in the L. plantarum Y44 genome, which might explain the strain's favorable gastric and intestinal transit tolerance. Some genes associated with encoding the NADH system, glutathione system, and thioredoxin system were predicted via in silico analysis and might account for the strain's ability to scavenge reactive oxygen species. Lactobacillus plantarum Y44 was susceptive to 7 antibiotics and did not produce biogenic amines, likely due to the absence of acquired antibiotic resistance genes and amino acid decarboxylase genes. The phenotype profile of L. plantarum Y44 was associated with its genetic characteristics, indicating that strains with certain physiological functions can be screened by analyzing their phenotypic and genotypic characteristics. Lactobacillus plantarum Y44 has the potential to be used as a starter culture in fermented dairy products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call