Abstract

We report here that the level of endothelin-1 (ET-1) mRNA from bovine aortic endothelial cells grown in vitro is rapidly (within 1 h of exposure) and significantly (fivefold) decreased in response to fluid shear stress of physiological magnitude. The downregulation of ET-1 mRNA occurs in a dose-dependent manner that exhibits saturation above 15 dyn/cm2. The decrease is complete prior to detectable changes in endothelial cell shape and is maintained throughout and following alignment in the direction of blood flow. Peptide levels of ET-1 secreted into the media are also reduced in response to fluid shear stress. Cyclical stretch experiments demonstrated no changes in ET-1 mRNA, while increasing media viscosity with dextran showed that the downregulation is a specific response to shear stress and not to fluid velocity. Although both pulsatile and turbulent shear stress of equal time-average magnitude elicited the same decrease in ET-1 mRNA as steady laminar shear (15 dyn/cm2), low-frequency reversing shear stress did not result in any change. These results show that the magnitude as well as the dynamic character of fluid shear stress can modulate expression of ET-1 in vascular endothelium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call