Abstract

This paper presents a study of the metabolic response (dark respiration intensity, photosystem II efficiency, metabolic activity) and the yield of barley treated with 24-epibrassinolide and subjected to high-temperature stress. Transport of exogenously applied 24-epibrassinolide in barley and changes in the profile of brassinosteroids that may occur in tissues after 24-epibrassinolide application were also studied. The water solution of 24-epibrassinolide (0.005 and 0.25 mg dm−3) was applied via infiltration of the first and second leaves of 12-day-old seedlings. Control plants were treated with water solution of hormone solvent (ethanol). Fifteen-day-old plants were subjected to high-temperature stress (42°C for 3 h). The influence of hormone treatment and stress conditions was investigated in the first and second leaves based on measurements of PSII efficiency. The aftereffect of plant treatment was investigated in the seventh leaf (measurements of PS II efficiency, dark respiration intensity, metabolic activity). The transport efficiency of 24-epibrassinolide exogenously applied to the first and second leaves, as well as the profile of other brassinosteroids, was also measured on the seventh leaf. Finally, yield formation was estimated. 24-epibrassinolide showed protective action, which manifested itself in the improved functioning of PSII, but this was observed in case of higher hormone concentration and only for the first, older leaf. The PSII efficiency of the seventh leaf was similar in plants treated with brassinosteroid and in the control plants, whereas the respiration intensity and metabolic activity decreased in plants previously treated with higher concentration of 24-epibrassinolide. The use of a higher hormone concentration at the seedling phase ultimately resulted also in lower crop yield. Brassinosteroids—brassinolide and castasterone—were detected in barley leaves. 24-epibrassinolide was found only in trace amounts in control plants. Its exogenous application directly to the apoplast of the first and second leaves resulted in an increase in the 24-epibrassinolide content in the seventh leaf, but did not depend on whether a high or low concentration had been applied to the plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.