Abstract

Longer distance cross-country ski (14–220 km) races such as the Visma Ski Classics (VSC) has recently gained attention in addition to the traditional Olympic distances (5–50 km) associated with cross-country (XC) skiing. These long-distance races are characterized by extensive use of the upper body while double poling (DP). While there is a substantial amount of research on Olympic distance XC skiing, the physiological capacities of VSC skiers has not yet been explored. We recruited seven elite male VSC skiers and seven well-trained national level male XC skiers to undergo three tests in the laboratory: (1) a one repetition maximum (1RM) strength test in a cable pulldown; (2) roller skiing tests on a treadmill (10.5% inclination) for determination of gross efficiency (GE) at submaximal speeds (8 and 10 km·h−1) in DP and diagonal stride (DS); (3) two ramp protocols to exhaustion (15% inclination, starting speed 7 km·h−1) in DP and DS for the assessment of peak and maximal oxygen uptake (O2peak and O2max), respectively. Compared with the national level XC skiers, the VSC skiers performed similar in the 1RM cable pulldown, displayed 12.2% higher GE in DP at 8 km·h−1 but did not display any difference at 10 km·h−1, and had lower blood lactate concentration and heart rate at both submaximal speeds. The VSC skiers had longer time to exhaustion compared with the national level XC skiers during the two ramp protocols in DS (18%) and in DP (29%). The O2max was 10% higher in DS compared with DP, with no differences between the groups. The O2peak/O2max-ratio of 90% did not differ between the two groups. In conclusion, the main differences were lower cardiorespiratory and metabolic responses at submaximal speeds as well as longer time to exhaustion in VSC skiers compared with national level XC skiers. This suggest efficiency to be the main difference between VSC and national level XC skiers.

Highlights

  • Cross-country skiing (XCS) is unique due to its high demands for endurance and complex regulation and fluctuation of oxygen (O2) delivery for both the upper and lower body (Holmberg et al, 2007)

  • There were no differences in 1 repetition maximum (1RM) pull-down performance between the Visma Ski Classics (VSC) skiers and the national level XC skiers with respect to absolute [VSC: 90.0 (6.0) kg, national level XC: 80.0 (20.0) kg; p = 0.32] or relative to body weight [VSC: 1.19 (0.18), national level XC: 1.16 (0.26); p = 0.46] values

  • Within each of the groups separately, VSC skiers had higher gross efficiency (GE) in double poling (DP) at 10 km·h−1 compared with DP at 8 km·h−1 (p < 0.001), whereas no differences was found for the national level XC skiers (p = 0.08)

Read more

Summary

Introduction

Cross-country skiing (XCS) is unique due to its high demands for endurance and complex regulation and fluctuation of oxygen (O2) delivery for both the upper and lower body (Holmberg et al, 2007). Cross-country (XC) skiers compete in various forms and distances with the International Ski Federation (FIS) hosting the Olympic distances in their World Cup series. This series includes repetitive sprint competitions (1–3 km) and races over longer distances (5–50 km) in mass- and individual starts (Sandbakk and Holmberg, 2017). The VSC merges the most traditional long distance XCS events in Europe and worldwide, and the skiers only compete in the classic technique, compared with the FIS world cup series where the skating technique is employed. Other physiological characteristics, such as work economy and/or efficiency has been suggested to be important for XCS performance (Stöggl et al, 2007; Sandbakk et al, 2010, 2011b; Østerås et al, 2016)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call