Abstract

The cellular substrates of antennular flicking behavior in the crayfish Procambarus clarkii were investigated. Flicking involves fast downward movements of the external filament of each biramous antennule (1st antenna), and is mediated by phasic contractions of a short muscle, the external filament depressor. Phasic contractions of the external filament depressor depend upon stereotyped impulse bursts in a single motorneuron (P1). These bursts have a characteristic impulse frequency profile that is consistent upon successive occurrences. The temporal characteristics of the impulse burst suggest that the central depolarizations generating each burst may be similar to driver potentials described for motor neurons in crustacean cardiac ganglia. Responses of the external filament to odorants have a long latency and are characterized by repetitive bursts and tonic activity in some external filament depressor fibers. Tonic activity in a slowly contracting muscle, the antennular depressor muscle, is also evoked by chemical stimulation. Flicking is consistently evoked only by mechanical or hydrodynamic stimulation of the cephalothorax, antennae and antennules. The sensitivity and short latency of the hydrodynamic antennule-generated flick reflex is consistent with the sensitivity of rapidly conducting, hydrodynamically activated mechanoreceptor neurons in both antennular filaments. I propose that antennular flicking, which has been shown to enhance the dynamic response characteristics of olfactory receptor neurons on the external antennular filament, has evolved as a response to the turbulence associated with fluid movement, within which chaotic odorant concentration fronts may be imbedded.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.