Abstract

Although many studies have demonstrated the physiological action of motilin on the migrating motor complex, the precise mechanisms remain obscure. To obtain new insights into the mechanisms, we focused on the house musk shrew (Suncus murinus, suncus used as a laboratory name) as a small model animal for in vivo motilin study, and we studied the physiological characteristics of suncus gastrointestinal motility. Strain gauge transducers were implanted on the serosa of the gastric body and duodenum, and we recorded gastrointestinal contractions in the free-moving conscious suncus and also examined the effects of intravenous infusion of various agents on gastrointestinal motility. During the fasted state, the suncus stomach and duodenum showed clear migrating phase III contractions (intervals of 80-150 min) as found in humans and dogs. Motilin (bolus injection, 100-300 ng/kg; continuous infusion, 10-100 ng·kg(-1)·min(-1)) and erythromycin (80 μg·kg(-1)·min(-1)) induced gastric phase III contractions, and motilin injection also increased the gastric motility index in a dose-dependent manner (P < 0.05, vs. saline). Pretreatment with atropine completely abolished the motilin-induced gastric phase III contractions. On the other hand, in the free-feeding condition, the suncus showed a relatively long fasting period in the light phase followed by spontaneous gastric phase III contractions. The results suggest that the suncus has almost the same gastrointestinal motility and motilin response as those found in humans and dogs, and we propose the suncus as a new small model animal for studying gastrointestinal motility and motilin in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call