Abstract

To investigate the T2* values within the junctional zone and outer uterine myometrium and their changes during the menstrual cycle, and thus to evaluate their physiologic changes on blood oxygenation level-dependent (BOLD) magnetic resonance (MR) imaging. Single-shot echo-planar imaging (EPI) was used to acquire T2*-weighted images (TR/TE = 1000 msec/23-150 msec) from 15 healthy females with a 1.5-T magnet. T2* values of both junctional zone and outer uterine myometrium were measured within a single breathhold and during three menstrual cycle phases (menstrual, periovulatory, and luteal phase). Signal intensities of uterine myometrium on T2-weighted images were also evaluated. T2* could successfully be calculated in 13 subjects. T2* values for the junctional zone were significantly lower than those of the outer myometrium at every phase(P < 0.001), and T2* values of both junctional zone (P < 0.05) and outer (P < 0.01). Myometrium in the menstrual phase was significantly lower than those in the other phases. On T2-weighted images, the signal intensity of the junctional zone was significantly lower than outer myometrium in every phase (P < 0.01), but there was no significant difference among menstrual cycle phases in both layers (P > 0.05). This preliminary study suggested that menstrual cycle changes of the uterine myometrium were shown by BOLD imaging. BOLD MR imaging may be an potential modality to investigate physiologic changes of the uterine myometrium during the menstrual cycle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.