Abstract

Two murine hybridoma cell lines (167.4G5.3 and S3H5/gamma2bA2) were adapted to grow in low-serum and serum-free media by a weaning procedure. The changes in cell growth, metabolic, and antibody production rates with adaptation were examined using biochemical and flow cytometric analyses. After adaptation to a particular serum level, the short-term serum response of the cells was experimentally determined. Specific growth rates, glucose and glutamine uptake and lactate and ammonia production rates, and specific antibody production rates were evaluated from the data. For both cell lines, an improvement in cell growth was observed after adaptation, and both higher growth rates and higher cell concentrations were obtained. The specific glucose and glutamine uptake rates and the lactate and ammonia production rates changed insignificantly with adaptation. Conversely, changes in the specific antibody production rate of the two cell lines differed. Cell line 167.4G5.3 showed a loss in antibody productivity at low serum levels, while the S3H5/gamma2bA2 kept its original productivity in low-serum-containing media. The intracellular antibody content for S3H5/gamma2bA2 cells remained unaltered by adaptation, but a low antibody containing cell population appeared in the 167.4G5.3 culture. The loss of specific antibody productivity in this cell line was due to the appearance of this population.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call