Abstract

Two-month-old tomato plants were submitted to day/night cycles and to prolonged darkness in order to investigate the physiological and biochemical response to sugar starvation in sink organs. Roots appeared particularly sensitive to the cessation of photosynthesis, as revealed by the reduction of the growth rate and the decline of the carbohydrate and protein content. Therefore, excised tomato roots were used as a model to deepen the characterization of sugar starvation symptoms. In excised roots, the endogenous sugars were rapidly exhausted and significant degradation of protein was observed. Glutamine and asparagine accounted for most of the nitrogen released by protein breakdown. Respiration declined and proliferation- and growth-associated genes were repressed soon after the beginning of the sugar depletion. Among the genes studied, only the gene encoding asparagine synthetase was strongly induced. All the starvation symptoms were reversible when the roots were resupplied with sugar. When the culture conditions deteriorated, the metabolic and molecular changes led to the triggering of apoptosis of the root cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.