Abstract
Diurnal activity is characteristic of many toad species, including Bufo granulosus from the Brazilian semi-arid biome called the Caatinga. Because of their patterns of activity, juvenile toads are exposed to hot and dehydrating conditions. Our investigation focuses on temperature and water relationships, and is based on the prediction that anuran diurnal activity in a semi-arid environment must be associated with morphological, physiological and behavioral traits enhancing thermal tolerances, capacity for performance at high temperatures and water balance. To test specific hypothesis related with this prediction, we investigated postmetamorphic B. granulosus and collected data on thermal tolerances and preferences, thermal safety margins, thermal dependence of locomotor behavior, thermal and kinetic properties of citrate synthase (CS), and skin morphophysiology. This information was compared with additional data from adult conspecifics and adult toads from sympatric species or from species from more moderate environments. We found that juvenile B. granulosus exhibit the highest critical maximum temperature reported for toads (44.2 degrees C) and are well suited to move at high temperatures. However, and in contrast with juveniles of other Bufo species, they do not show thermal preferences in a gradient and appear to hydroregulate more than thermoregulate. The CS of adult and juvenile toads shows typical patterns of thermal sensibility, but the thermal stability of this enzyme is much higher in juveniles than in adult Bufo of any other species studied. The inguinal skin exhibits a complex folding pattern and seems highly specialized for capillary water uptake. Diurnal activity in juvenile B. granulosus is possible given high thermal tolerances, keen ability to detect and uptake water, and avoidance behaviors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.