Abstract

Salinity is a complex trait that affects growth and productivity in many crops, including rice. Mutation induction, a useful tool to generate salt tolerant plants, enables the analysis of plants with similar genetic background, facilitating the understanding of the salt tolerance mechanisms. In this work, we generated three salt tolerant mutant lines by irradiation of a salt-sensitive cultivar plants and screened M2 plants at seedling stage in the presence of high salinity. These three lines, SaT20, SaS62, and SaT58, showed different responses to salinity, but exhibited similar phenotype to wild type plants, except SaT20 that displayed shorter height when grown in the absence of salt. Under salt conditions, all three mutants and the parental line showed similar reduction in yield, although relevant differences in other physiological parameters, such as Na+ accumulation in healthy leaves of SaT20, were registered. Microarray analyses of gene expression profiles in roots revealed the occurrence of common and specific responses in the mutants. The three mutants showed up-regulation of responsive genes, the activation of oxido-reduction process and the inhibition of ion transport. The participation of jasmonate in the plant response to salt was evident by down-regulation of a gene coding for a jasmonate O-methyltransferase. Genes dealing with lipid transport and metabolism were, in general, up-regulated except in SaS62, that also exhibited down-regulation of genes involved in ion transport and Ca2+ signal transduction. The two most tolerant varieties, SaS62 and SaT20, displayed lower levels of transcripts involved in K+ uptake. The physiological study and the description of the expression analysis evidenced that the three lines showed different responses to salt: SaT20 showed a high Na+ content in leaves, SaS62 presented an inhibition of lipid metabolism and ion transport and SaT58 differs in both features in the response to salinity. The analysis of these salt tolerant mutants illustrates the complexity of this trait evidencing the breadth of the plant responses to salinity including simultaneous cooperation of alternative or complementary mechanisms.

Highlights

  • Salinity is an increasing problem that affects an important portion of land worldwide, since it is estimated that ∼20% of the irrigated areas are affected by soil salinization (Yeo, 1998)

  • To evaluate the sensitivity of Bahia plants to salinity and to determine the salt tolerance screening conditions, Bahia seedlings were grown in hydroponic culture under different salt conditions by adding NaCl to the culture medium to reach 0, 40, 80, and 120 mM concentration

  • Plants that survived after 4 weeks of culture were selected and salt tolerance phenotypes were confirmed in the subsequent generation

Read more

Summary

Introduction

Salinity is an increasing problem that affects an important portion of land worldwide, since it is estimated that ∼20% of the irrigated areas are affected by soil salinization (Yeo, 1998). Tolerance of rice plants to salt stress varies according to the stage of development: Rice is relatively tolerant during germination, tillering and maturing, but sensitive during a short period after germination and at panicle initiation (Zeng and Shannon, 2000). This observation may suggest that the mechanisms of response during these salt several sensitivity stages may be different and that tolerant plants presumably may combine these different kinds of responses (Moradi et al, 2003). The multiple physiological alterations caused by salt suggest the existence in plants of different responses and mechanisms to cope with all aspects of this adverse condition

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call