Abstract

Laboratory measurements of net carbon dioxide exchange in relation to light and temperature were made on Dicranum fuscescens Turn, at Schefferville, Quebec (latitude 55° N), during the summer of 1974. Net CO2 exchange was measured using an open-flow infrared gas analysis system. Moss samples were collected from two field sites (a lowland lichen woodland and highland semitundra region) immediately before the experiments. Temperature optima for photosynthesis in plants from both sites showed acclimation to higher temperatures in the middle of the season. Measured maximum rates of photosynthesis, attained in early July, equalled 2.1 mg CO2∙g dry weight−1∙h−1 in plants from the highland site and 0.74 mg CO2∙g dry weight−1∙h−1 in those from the lowland lichen woodland. Dark respiration rates showed no seasonal temperature acclimation. Radiation levels required for saturation of photosynthesis at optimum temperatures showed an increase from early season through midseason in samples from both populations. A reverse trend towards lower light requirements for saturation was detectable in the late season. Field-collected plants were exposed to different temperature regimes for [Formula: see text] months in growth chambers. During this period, temperature acclimation of photosynthesis to ambient temperature conditions elicited a rapid shift in optimum temperatures for photosynthesis over periods as short as 48 h. All results are discussed in relation to measured environmental parameters in the two study sites throughout the 1974 growing season.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call