Abstract

In agricultural soil, the bioavailability of iron (Fe) and phosphorus (P) is often below the plant’s requirement causing nutritional deficiency in crops. Under P-limiting conditions, white lupin (Lupinus albus L.) activates mechanisms that promote P solubility in the soil through morphological, physiological and molecular adaptations. Similar changes occur also in Fe-deficient white lupin roots; however, no information is available on the molecular bases of the response. In the present work, responses to Fe and P deficiency and their reciprocal interactions were studied.Transcriptomic analyses indicated that white lupin roots upregulated Fe-responsive genes ascribable to Strategy-I response, this behaviour was mainly evident in cluster roots. The upregulation of some components of Fe-acquisition mechanism occurred also in P-deficient cluster roots. Concerning P acquisition, some P-responsive genes (as phosphate transporters and transcription factors) were upregulated by P deficiency as well by Fe deficiency.These data indicate a strong cross-connection between the responses activated under Fe or P deficiency in white lupin. The activation of Fe- and P-acquisition mechanisms might play a crucial role to enhance the plant’s capability to mobilize both nutrients in the rhizosphere, especially P from its associated metal cations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call