Abstract

Masson pine (Pinus massoniana Lamb.) is an important tree species of high economic value in southern China, but osmotic stress threatens its growth and development. In this study, physiological measurements and RNA-Seq analysis were used to clarify the physiological and molecular responses of P. massoniana under osmotic stress. Osmotic treatment caused cell membrane damage and reactive oxygen species (ROS) accumulation in the tree seedlings, but it also increased their antioxidant enzyme (superoxide dismutase, peroxidase, and catalase) activities and osmotic substances (soluble sugars, proline, and trehalose) content so as to adjust to osmotic stress conditions. A total of 1 789 differentially expressed genes (DEGs) were identified by transcriptome sequencing, of which 962 were up-regulated and 827 genes down-regulated. A series of stress-induced genes associated with signal transduction, ROS-scavenging, osmotic regulation, late embryogenesis abundant (LEA) protein, pentatricopeptide repeat-containing protein, and transcription factors' regulation were distinguishable. This detailed investigation of the stress-responsive genes and pathways provides new insight into molecular mechanism of abiotic stress response in P. massoniana. Further, this study's data can contribute to genetic engineering or molecular breeding efforts to enhance osmotic resistance in P. massoniana stands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call