Abstract

Temperature is a crucial factor affecting microalgae CO2 capture and utilization. However, an in-depth understanding of how microalgae respond to temperature stress is still unclear. In particular, the regulation mechanism under opposite temperature (heat and cold) stress had not yet been reported. In this study, the physicochemical properties and transcription level of related genes of microalgae Auxenochlorella protothecoides UTEX 2341 under heat and cold stress were investigated. Heat stress (Hs) caused a drastic increase of reactive oxygen species (ROS) in UTEX 2341. As key elements responded to Hs, superoxide dismutase (SOD) enzyme increased by 150%, 70%, and 30% in activity, and nitric oxide (NO) grew by 409.6%, 212.5%, and 990.4% in content compared with the control at 48 h, 96 h, 168 h. Under cold stress (Cs), ROS increased in the early stage and decreased in the later stage. As key factors responded to Cs, proline (Pro) increased respectively by 285%, 383%, and 81% in content, and heat shock transcriptional factor HSFA1d increased respectively by 161%, 71%, and 204% in transcript level compared with the control at 48 h, 96 h, 168 h. Furthermore, the transcript level of antioxidant enzymes or antioxidant coding genes was consistent with the changing trend of enzymes activity or antioxidant content. Notably, both glutathione (GSH) and heat shock protein 97 (hsp 97) were up-regulated in response to Hs and Cs. In conclusion, GSH and hsp 97 were the core elements of UTEX 2341 in response to both Hs and Cs. SOD and NO were the key elements that responded to Hs, while proline and HSFA1d were the key elements that responded to Cs. This study provided a basis for the understanding of the response mechanism of microalgae under temperature stress and the improvement of the microalgae tolerance to temperature stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call