Abstract

Phyto-pathogenic fungal species is a leading biotic stress factor to agri-food production and ecosystem of globe. Chemical (Systemic fungicides) and biological treatment (micro-organism) are globally accepted methods that are being used against biotic stress (disease) management. Plant Growth-Promoting Microbes are being used as an alternative to ease chemical dependency as their overdoses have generated injurious effects on plants and environment. Therefore, present study performs to evaluate the photochemical and physiological profiling of plants exposed to chemical and biological treatment in biotic stress (disease) environment. Two concentrations of each chemical treatment i.e. Topsin-M 70 (Dimethyl 4,4′-o-phenylene bis 3-thioallaphanate, MF1 = 3 g kg−1 and MF2 = 6 g kg−1 seeds) and biological treatment i.e. Trichoderma harzianum strain Th-6 (MT1 = 106 spores mL−1and MT2 = 107 spores mL−1) were used in this experiment. Macrophomina phaseolina (MP) were used as biotic stress factor causing root rot disease in soybean plants. Morpho-physiological assessments and light harvesting efficiency of photosystem II were conducted after 52 days of treatment. Maximum quantum yield (Fv/Fm), number and size of active reaction center (Fv/Fo), photochemical quenching (qP), efficiency of photosystem II (ΦPSII), electron transport rate (ETR), chlorophyll content index (CCI), relative water content (RWC) and stomatal conductance (SC) were increased in MT2 and MF1 treatments as compared to stress plants (MP). Biological (MT2) and chemical (MF1) treatment lessen the production of stress markers showing −48.0 to −54.3% decline in malondialdehyde (MDA) and −42.0 to −53.7% in hydrogen peroxide (H2O2) as compared to stress plant (MP). Biological treatment in both concentration (MF1 & MF2) while chemical treatment at low dose effectively mitigates biotic stress and eases the magnitude of disease. Increasing doses of chemical treatment persuaded deleterious effects on the physiology and light harvesting efficiency of stressed plant suggesting the role of biological treatment (T. harzianum) against biotic stress management in future of crop protection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call