Abstract

Waterlogging is a serious threat to agriculture that is expected to become more common due to climate change. It is well established that many plants are susceptible to waterlogging, including crops such as rapeseed. To investigate the responses and tolerance to waterlogging of the re-emerging oilseed crop camelina (Camelina sativa), camelina lines of different geographical origins were subjected to waterlogging. Camelina was very sensitive to waterlogging at vegetative growth stages, with a relatively short treatment of 4 days proving lethal for the plants. A treatment duration of 2 days resulted in growth inhibition and lower yields and was used to study the response of 8 different camelina lines to waterlogging at two different vegetative growth stages before bolting. Generally, younger plants (7–9 leaves) were more sensitive than older plants (15–16 leaves). In addition to morphological and agronomic traits, plants were phenotyped for physiological parameters such as chlorophyll content index and total antioxidant capacity of the leaves, which showed significant age-dependent changes due to waterlogging. These results underpin that waterlogging during the vegetative phase is a serious threat to camelina, which needs to be addressed by identifying and establishing tolerance to excess water to harness camelina's potential as a climate-smart crop.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call