Abstract

Classical transmitters and neuroactive peptides act as transmitters or modulators within the central and peripheral nervous systems of nematodes, for example Ascaris suum and Caenorhabditis elegans. Acetylcholine (ACh) and gamma-aminobutyric acid (GABA) are respectively the excitatory and inhibitory transmitters onto somatic body wall muscle while 5-hydroxytrypamine (5-HT) is the excitatory transmitter onto pharyngeal muscle. 5-HT also reduces ACh-induced contractions of somatic muscle and this action of 5-HT is mediated through activation of adenylate cyclase while that on pharyngeal muscle is mediated through inositol phosphate activation. Glutamate, dopamine and octopamine also have transmitter roles in nematodes. Neuroactive peptides of the RFamide family can excite somatic muscle, for example, AF-1 (KNEFIRFamide), AF-2 (KHEYLRFamide), AF-3 (AVPGVLRFamide) and AF-4 (GDVPGVLRFamide) or inhibit and relax this muscle, for example, PF-1 (SDPNFLRFamide), PF-2 (SADPNFLRFamide) and PF-4 (KPNlRFamide). In addition PF-3 (AF-8) (KSAYMRFamide) has a biphasic action on pharyngeal muscle, excitation followed by inhibition while AF-1 only inhibits this muscle. The peptide effects can be either pre- or postsynaptic or both and are likely to be mediated through second messenger systems. In addition these peptides modulate the action of classical transmitters, particularly ACh.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.