Abstract

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) enable human cardiac cells to be studied in vitro, although they use glucose as their primary metabolic substrate and do not recapitulate the properties of adult cardiomyocytes. Here, we have explored the interplay between maturation by stimulation of fatty acid oxidation and by culture in 3D. We have investigated substrate metabolism in hiPSC-CMs grown as a monolayer and in 3D, in porous collagen-derived scaffolds and in engineered heart tissue (EHT), by measuring rates of glycolysis and glucose and fatty acid oxidation (FAO), and changes in gene expression and mitochondrial oxygen consumption. FAO was stimulated by activation of peroxisome proliferator-activated receptor alpha (PPARα), using oleate and the agonist WY-14643, which induced an increase in FAO in monolayer hiPSC-CMs. hiPSC-CMs grown in 3D on collagen-derived scaffolds showed reduced glycolysis and increased FAO compared with monolayer cells. Activation of PPARα further increased FAO in cells on collagen/elastin scaffolds but not collagen or collagen/chondroitin-4-sulphate scaffolds. In EHT, FAO was significantly higher than in monolayer cells or those on static scaffolds and could be further increased by culture with oleate and WY-14643. In conclusion, a more mature metabolic phenotype can be induced by culture in 3D and FAO can be incremented by pharmacological stimulation.

Highlights

  • Human induced pluripotent stem cell-derived cardiomyocytes enable human cardiac cells to be studied in vitro, they use glucose as their primary metabolic substrate and do not recapitulate the properties of adult cardiomyocytes

  • We have explored the role of both physiological and pharmacological stimulation in the maturation of substrate metabolism using the interplay between maturation by stimulation of fatty acid oxidation (FAO) and by culture in 3D. hiPSC-CMs were grown as a 2D monolayer, in 3D culture on collagen-derived scaffolds interlaced with extracellular-matrix materials or in engineered heart tissue (EHT)

  • We investigated substrate metabolism in hiPSC-CMs grown as a monolayer and in 3D, with and without stimulation of fatty acid oxidation by activation of the peroxisome proliferator-activated receptor alpha (PPARα) using oleate (OA) and the agonist pirinixic acid (WY-14643)[25]

Read more

Summary

Introduction

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) enable human cardiac cells to be studied in vitro, they use glucose as their primary metabolic substrate and do not recapitulate the properties of adult cardiomyocytes. It is hindered by the fact that human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have a very immature phenotype and do not fully recapitulate the properties of adult heart cells, even when cultured for prolonged ­periods[3] This is, in part, due to the fact that hiPSC-CMs are frequently grown in 2D in high glucose media so that the cells have limited metabolic demand and are exposed to non-physiological concentrations of n­ utrients[4]. HiPSC-CMs that are grown as a monolayer are unlikely to fully recapitulate the metabolic phenotype of cardiac cells in vivo

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call