Abstract

BackgroundSeaweeds in the upper intertidal zone experience extreme desiccation during low tide, followed by rapid rehydration during high tide. Porphyra sensu lato are typical upper intertidal seaweeds. Therefore, it is valuable to investigate the adaptive mechanisms of seaweed in response to dehydration-rehydration stress.ResultsA reduction in photosynthetic capacity and cell shrinkage were observed when N. haitanensis was dehydrated, and such changes were ameliorated once rehydrated. And the rate and extent of rehydration were affected by the air flow speed, water content before rehydration, and storage temperature and time. Rapid dehydration at high air-flow speed and storage at − 20 °C with water content of 10% caused less damage to N. haitanensis and better-protected cell activity. Moreover, proteomic and metabolomic analyses revealed the abundance members of the differentially expressed proteins (DEPs) and differentially abundant metabolites (DAMs) mainly involved in antioxidant system and osmotic regulation. The ascorbic acid-glutathione coupled with polyamine antioxidant system was enhanced in the dehydration response of N. haitanensis. The increased soluble sugar content, the accumulated polyols, but hardly changed (iso)floridoside and insignificant amount of sucrose during dehydration indicated that polyols as energetically cheaper organic osmolytes might help resist desiccation. Interestingly, the recovery of DAMs and DEPs upon rehydration was fast.ConclusionsOur research results revealed that rapid dehydration and storage at − 20 °C were beneficial for recovery of N. haitanensis. And the strategy to resist dehydration was strongly directed toward antioxidant activation and osmotic regulation. This work provided valuable insights into physiological changes and adaptative mechanism in desiccation, which can be applied for seaweed farming.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.