Abstract

BackgroundDrought is a major problem limiting the growth and development of plants in the world and especially in Tunisia. Halophytes constitute a renewable wealth and they offer great flexibility with regard to abiotic stresses, and they are evaluated for their ecological and potential food use.ResultsThe proposed work identifies the response of Atriplex hortensis var. rubra to the germinal stage and the reproductive stage under a deficient water regime to measure the drought resistance of this plant that has very interesting forage production abilities. The morphological and water parameters are used to characterize the physiological response of this species to the effects of water deficit. For the germination test, four levels of osmotic potential caused by PEG-6000 solutions at different levels of water potential (− 0.1, − 0.5, − 1.0, − 1.5 MPa) were adopted in seed of A. hortensis germination media. The methodology adopted in the second experiment is based on the cultivation of potted plants stored in a semi-controlled greenhouse at flowering stage. The water deficit was imposed on the plants by watering stop for a week, and the control plants are subjected to a water regime maintained irrigated at 100% of the capacity in the field. Drought tolerance was scored 30 days after the drought stress commenced based on the number of branches and leaf, dry biomass, relative water content, leaf water potential, and nitrogen content. No significant difference was observed in germination rates for all PEG concentrations throughout the experiment which are still close to 60%. The results obtained for the second experiment show a high tolerance of A. hortensis under water stress. Drought induced decreases in two physiological parameters, the number of branches and leafs, and the relative water content of annual Atriplex. Heatmap and PCA data revealed that physiological parameters are more sensitive than morphological parameters in distinguishing the control and drought treatments.ConclusionsIndeed, the orache is distinguished by a great ability to retain water potential after a month of stress. Thus, height, number of branches, leaf and shoot dry weight, and percentage of nitrogen were significantly similar for controls and stressed for A. hortensis. On the other hand, measured root length and basic and midday water potential show significant variability between controls and stressors. In addition, these results highlight the importance of the resistance of Atriplex halophyte forage to drought.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call