Abstract

The responses of the seagrass Zostera capricorni Aschers, to changes in light intensity were examined in flowing seawater aquaria experiments. Plants were grown in six light regimes: full sunlight (100%), 50, 30, 20, 15, and 5% of full light over a 2-month period. Measurements of growth, biomass, pigments, stable isotopes and leaf anatomy were made at the end of the experiment. Plants survived under all light treatments, even below minimum light requirements of related seagrasses. However, the experimental light levels possibly do not correspond to light reaching seagrass leaves under natural conditions. Plants grown under high light conditions (50–100% light) had smaller shoots, higher biomass and productivity, less negative δ 13C values, lower leaf nitrogen content, less chlorophyll and more ultraviolet light absorbing pigment than plants grown under low light conditions (<20% light). Photoadaptation by ultraviolet light absorbing pigment(s) was noted, with more variability in ultraviolet light pigments than in chlorophyll levels. Increased CO 2 demand and/or increased CO 2 recycling in internal gas spaces may account for the less negative δ 13C values in high light treatments, indicating less isotopic discrimination in seagrass leaves in high light. A saturation response of growth rates to light intensity was observed, with less substantial growth reductions at lower light intensities than observed in other seagrass shading experiments. Nutrient limitation in high light was inferred by a growth maximum at 50% light level, increased root biomass and lower leaf nitrogen content in high light treatments. Overall, a wide range of morphological and physiological photoadaptive responses not previously reported in Zostera capricorni was observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call