Abstract

The toxic effects of silver nanoparticles (AgNPs) on the physiology and morphology of the green microalga Chlorella vulgaris were studied. AgNPs were characterized by particle size distribution, ζ potential measurement, and atomic force microscopy (AFM). Chlorella vulgaris was exposed to 90–1440 μg/L of AgNPs range in Bold's Basal Medium for 96 h. The inhibition of algae growth rate and changes in the concentrations of chlorophyll-a, chlorophyll-b, pheophytin, and carotenoids was determined at the beginning and end of the trial. Cell diameter and volume, carbohydrate, total lipids, and protein content were also determined. Our data strongly suggest that the toxic effects of the AgNPs resulted in concentration and time-dependent. AgNPs altered C. vulgaris growth kinetics and cell metabolism expressed in photosynthetic pigments and biochemical composition. Our study confirmed the cytotoxicity of AgNPs through the algal growth inhibition with an EC50 value of 110 μg/L. Also, changes of chlorophyll-a, chlorophyll-b, pheophytin, and carotenoids concentrations were observed associated with a color shift from green to pale brown of algae cultures exposed to AgNPs for 96 h. Furthermore, algae cell concentration, diameter, and volume, plus total lipid, protein, and carbohydrates contents in the presence of AgNPs, were significantly altered compared to untreated cells. In synthesis, this study highlighted AgNPs toxic effects on morphological and physiological traits of C. vulgaris and warns about possible impacts on energy flow and aquatic food web structure, and on the transfer efficiency of energy to higher trophic levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call