Abstract

Background: In order to optimize outcomes of novel therapies for cerebellar ataxias (CAs), it is desirable to start these therapies while declined functions are restorable: i.e. while the so-called cere-bellar reserve remains.Objective: In this mini-review, we tried to define and discuss the cerebellar reserve from physiological and morphological points of view.Method: The cerebellar neuron circuitry is designed to generate spatiotemporally organized outputs, re-gardless of the region. Therefore, the cerebellar reserve may be defined as a mechanism to restore its proper input-output organization of the cerebellar neuron circuitry, when it is damaged. Then, the follow-ing four components are essential for recruitment of the cerebellar reserve: operational local neuron cir-cuitry; proper combination of mossy fiber inputs to be integrated; climbing fiber inputs to instruct favor-able reorganization of the integration; deep cerebellar nuclei to generate reorganized outputs.Results: We discussed three topics related to these resources, 1) principles of generating organized cere-bellar outputs, 2) redundant mossy fiber inputs to the cerebellum, 3) plasticity of the cerebellar neuron circuitry.Conclusion: To make most of the cerebellar reserve, it is desirable to start any intervention as early as possible when the cerebellar cell loss is minimal or even negligible. Therefore, an ideal future therapy for degenerative cerebellar diseases should start before consuming the cerebellar reserve at all. In the meantime, our real challenge is to establish a reliable method to identify the decrease in the cerebellar re-serve as early as possible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call