Abstract
Photoperiodism is an adaptive, seasonal timing system that enables organisms to coordinate their development and physiology to annual changes in the environment using day length (photoperiod) as a cue. This review summarizes our knowledge of the physiological mechanisms underlying photoperiodism in spider mites. In particular, the two-spotted spider mite Tetranychus urticae is focussed, which has long been used as a model species for studying photoperiodism. Photoperiodism is established by several physiological modules, such as the photoreceptor, photoperiodic time measurement system, counter system, and endocrine effector. It is now clear that retinal photoreception through the ocelli is indispensable for the function of photoperiodism, at least in T. urticae. Visual pigment, which comprised opsin protein and a vitamin A-based pigment, is involved in photoreception. The physiological basis of the photoperiodic time measurement system is still under debate, and we have controversial evidence for the hourglass-based time measurement and the oscillator-based time measurement. Less attention has been centred on the counter system in insects and mites. Mite reproduction is possibly regulated by the ecdysteroid, ponasterone A. Prior physiological knowledge has laid the foundation for the next steps essential for the elucidation of the molecular mechanisms driving photoperiodism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.