Abstract
Iron plays a crucial role in plant chlorophyll synthesis, respiration, and plant growth. However, excessive iron content can contribute to ginseng poisoning. We previously discovered that the application of silicon (Si) and potassium (K) can mitigate the iron toxicity on ginseng. To elucidate the molecular mechanism of how Si and K alleviate iron toxicity stress in ginseng. We investigated the physiological and transcriptional effects of exogenous Si and K on Panax ginseng. The results suggested that the leaves of ginseng with Si and K addition under iron stress increased antioxidant enzyme activity or secondary metabolite content, such as phenylalanine amino-lyase, polyphenol oxidase, ascorbate peroxidase, total phenols and lignin, by 6.21%–25.94%, 30.12%–309.19%, 32.26%–38.82%, 7.81%–23.66%, and 4.68%–48.42%, respectively. Moreover, Si and K increased the expression of differentially expressed genes (DEGs) associated with resistance to both biotic and abiotic stress, including WRKY (WRKY1, WRKY5, and WRKY65), bHLH (bHLH35, bHLH66, bHLH128, and bHLH149), EREBP, ERF10 and ZIP. Additionally, the amount of DEGs of ginseng by Si and K addition was enriched in metabolic processes, single-organism process pathways, signal transduction, metabolism, synthesis and disease resistance. In conclusion, the utilization of Si and K can potentially reduce the accumulation of iron in ginseng, regulate the expression of iron tolerance genes, and enhance the antioxidant enzyme activity and secondary metabolite production in both leaves and roots, thus alleviating the iron toxicity stress in ginseng.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.