Abstract

Microcystis is a well-known toxic cyanobacterium in eutrophic environments, and an increasing number of Microcystis blooms have emerged in salty reservoirs and coastal rivers. This study observed that many Microcystis were identified in a coastal river in June 2020. The relative abundance of Microcystis decreased from 81.2 to 10.2% in the sampling sites from a salinity of 0 (Sal. 0) to a salinity of 12 (Sal. 12). Hepatotoxic microcystins (MCs) were identified in the coastal river and its estuary. Of the samples, those with a salinity of 5 (Sal. 5) had the highest concentration of MCs at 7.81 ± 0.67 μg L-1. In a saline water simulation experiment, the results showed that salt inhibited Microcystis (M.) aeruginosa growth, enhanced the activity levels of superoxide dismutase (SOD) and catalase (CAT) and stimulated microcystin production. Transcription analysis showed that the expression levels of the psaB and rbcL genes controlling photosymbiotic processes were downregulated, and capD and csaBgene-related polysaccharide productions were upregulated by salt incubation. Notably, metabolism analysis showed that the total polysaccharides, proteins and small molecular matter, such as sucrose, methionine and N-acetyl-D-glucosamine, in the Microcystis cells increased substantially to resist the extracellular hyperosmotic pressure caused by the high salinity levels in culture. These findings indicate that increased salt in a natural aquatic body shifts the phytoplankton community by influencing the physiological metabolism of cyanobacteria and poses a high risk of microcystin exposure during cyanobacterial blooms in coastal rivers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.