Abstract

Drought is one of the most catastrophic abiotic stresses that affects global food production severely. The present work investigates the metabolic and physiological adaptation mechanisms in the xero-halophyte Haloxylon salicornicum to counter the effects of drought. This xero-halophyte can withstand a prolonged drought period of 14 days and recovered within 7 days of irrigation with minimal effects of drought on growth and physiological parameters. Photosynthetic parameters such as PN , gs , and E decreased significantly, whereas WUE increased under drought condition. Drought induces a significant decline in the Fv/Fm ratio. However, the value of Fv/Fm ratio successfully recovered within 7 days of the recovery period. Differential regulations of various antioxidative enzymes increase the drought tolerance potential of H. salicornicum. The metabolomic analysis of H. salicornicum shoot identified 63 metabolites: 43 significantly increased and 20 significantly decreased under drought conditions. These metabolites mainly include amino acids, organic acids, amines, sugar alcohols, sugars, fatty acids, alkaloids, and phytohormones. The metabolites that have a significant contribution towards drought tolerance include citric acid, malic acid, tartaric acid, d-erythrose, glyceric acid, sucrose, pentanoic acid, d-mannitol, ABA, and palmitic acid. KEGG pathway enrichment analysis showed that the vital drought-responsive metabolic pathways mainly include galactose metabolism, aminoacyl-tRNA biosynthesis, glyoxylate and dicarboxylate metabolism, citrate cycle (TCA cycle), alanine, aspartate, and glutamate metabolism. This study offers comprehensive information on physiological, antioxidative and metabolic adaptations and overall drought tolerance mechanisms in H. salicornicum. The information gained from this study will provide guidance to plant breeders and molecular biologists to develop drought-tolerant crop varieties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.