Abstract

Overwinter mortality of the Manila clam (Ruditapes philippinarum) is a major impediment to the aquaculture industry in China. Cold tolerance ability has a tremendous impact on the survivability of R. philippinarum during the overwintering season. In this study, we evaluated the effects of acute and chronic cold stress on the expression of Cold Shock Domain-containing E1 (CSDE1) and Antifreeze protein type II (AFPII) genes and the activities of lysozyme (LZM), catalase (CAT), and superoxide dismutase (SOD) in three cultivated strains (zebra, white, and white zebra) and two wild populations (northern and southern) of R. philippinarum. Under acute and chronic cold stress, the expression levels of CSDE1 and AFPII mRNA in the gills and hepatopancreas were significantly increased in all populations, but the increase varied among different strains and populations. Under acute cold stress, SOD activity significantly decreased in the two wild populations and the white zebra strain. LZM activity significantly decreased but CAT activity significantly increased in selected strains and populations after acute low temperature stress (P < 0.05). Under chronic cold stress, SOD activity significantly increased in the northern population and white zebra strain, while CAT activity significantly increased in the southern population and the white and zebra strains. These results provide useful information about the Manila clam response to cold stress that may be applied to improve the low temperature resistance of Manila clams in aquaculture environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call