Abstract
Dopamine controls various physiological functions in the brain and periphery by acting on its receptors D1, D2, D3, D4, and D5. Dopamine receptors are G protein–coupled receptors involved in the regulation of motor activity and several neurological disorders such as schizophrenia, bipolar disorder, Parkinson’s disease (PD), Alzheimer’s disease, and attention-deficit/hyperactivity disorder. Reduction in dopamine content in the nigrostriatal pathway is associated with the development of PD, along with the degeneration of dopaminergic neurons in the substantia nigra region. Dopamine receptors directly regulate neurotransmission of other neurotransmitters, release of cyclic adenosine monophosphate, cell proliferation, and differentiation. Here, we provide an update on recent knowledge about the signalling mechanism, mode of action, and the evidence for the physiological and functional basis of dopamine receptors. We also highlight the pivotal role of these receptors in the modulation of neurogenesis, a possible therapeutic target that might help to slow down the process of neurodegeneration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.