Abstract

In order to better understand the differences in xylose metabolism between natural xylose-utilizing Pichia stipitis and metabolically engineered Saccharomyces cerevisiae, we constructed a series of recombinant S. cerevisiae strains with different xylose reductase/xylitol dehydrogenase/xylulokinase activity ratios by integrating xylitol dehydrogenase gene (XYL2) into the chromosome with variable copies and heterogeneously expressing xylose reductase gene (XYL1) and endogenous xylulokinase gene (XKS1). The strain with the highest specific xylose uptake rate and ethanol productivity on pure xylose fermentation was selected to compare to P. stipitis under oxygen-limited condition. Physiological and enzymatic comparison showed that they have different patterns of xylose metabolism and NADPH generation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call