Abstract

Phosphorus (P) is a limiting plant soil nutrient. Long-term low inorganic phosphate (Pi) irreversibly damages plant cells and hinders plant growth. Plants have evolved several adaptive biochemical, physiological, and developmental responses to low-Pi stress. However, little is known about chloroplast responses to low-Pi stress. In this study, we used physiological and biochemical analyses to investigate melon chloroplast responses to low-Pi stress. The results indicated that low-Pi stress impeded melon seedling growth and reduced its dry matter content by inhibiting the photosynthesis. Low-Pi stress reduced the P content in shoots, which inhibited ATP synthase (ATP-ase) activity, and disturbed the proton and electron transport efficiency on chloroplast photosynthetic electron transport chain. In addition, low-Pi stress induced reactive oxygen species (ROS) production in the leaves, which caused membrane peroxidation. Therefore, redox homeostasis was not maintained, and the melon leaves presented with symptoms of photooxidative stress. To mitigate photoinhibition, the melon plants initiated non-photochemical chlorophyll fluorescence quenching (NPQ) initiated by acidification of the thylakoid lumen to dissipate excess excitation energy, significantly improved ROS-scavenging enzyme activity. Based on these experimental results, we concluded that low Pi inhibited photosystem activity and caused photooxidative stress and photoinhibition. To alleviate these negative effects, the plant activated its NPQ mechanism, alternative electron transport pathways, and antioxidant system to protect its chloroplasts.

Highlights

  • IntroductionPhosphorus (P) is an essential plant macronutrient required for growth and development

  • Nutrient deficiency substantially reduces crop quality and yield

  • Plant height decreased by 8.81% (P0.025) and 30.81% (P0.001) and stem diameter decreased by 7.16% (P0.025) and 17.01% (P0.001) compared to those of the control (P0.25), respectively

Read more

Summary

Introduction

Phosphorus (P) is an essential plant macronutrient required for growth and development. It participates in the synthesis of nucleotides, cell structural components, and membranes. Melon Chloroplasts and Phosphate Deficiency phosphate (Pi). It is abundant in the soil but is often unavailable in terrestrial ecosystems because it makes insoluble compounds with Fe3+, Al3+, Ca2+, and Mg2+ (Raghothama and Karthikeyan, 2005a,b). Mineral Pi fertilizers are widely used and have realized substantial economic benefits. Their excessive use causes aquatic eutrophication and hypoxia and, environmental degradation. Important to understand plant Pi sensitivity and the adaptive mechanisms in plants responding to low-Pi stress

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.