Abstract

Dunaliella salina (Chlorophyceae), Phormidium versicolor (Cyanophyceae), and Cylindrotheca closterium (Bacillariophyceae) were isolated from three ponds in the solar saltern of Sfax (Tunisia). Growth, pigment contents, and photosynthetic and antioxidant enzyme activities were measured under controlled conditions of three light levels (300, 500, and 1000 µmol photons m-2 s-1) and three NaCl concentrations (40, 80, and 140 g L-1). The highest salinity reduced the growth of D. salina and P. versicolor NCC466 and strongly inhibited that of C. closterium. According to ΦPSII values, the photosynthetic apparatus of P. versicolor was stimulated by increasing salinity, whereas that of D. salina and C. closterium was decreased by irradiance rise. The production of carotenoids in D. salina and P. versicolor was stimulated when salinity and irradiance increased, whereas it decreased in the diatom. Catalase (CAT), Superoxide dismutase (SOD), and Ascorbate peroxidase (APX) activities were only detected when the three species were cultivated under E1000. The antioxidant activity of carotenoids could compensate for the low antioxidant enzyme activity measured in D. salina. Salinity and irradiation levels interact with the physiology of three species that have mechanisms of more or less effective stress resistance, hence different resistance to environmental stresses according to the species. Under these stress-controlled conditions, P. versicolor and C. closterium strains could provide promising sources of extremolyte for several purposes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.