Abstract

Musicians display individual differences in their spontaneous performance rates (tempo) for simple melodies, but the factors responsible are unknown. Previous research suggests that musical tempo modulates listeners’ cardiovascular activity. We report an investigation of musicians’ melody performances measured over a 12-h day and subsequent changes in the musicians’ physiological activity. Skilled pianists completed four testing sessions in a single day as cardiac activity was recorded during an initial 5 min of baseline rest and during performances of familiar and unfamiliar melodies. Results indicated slower tempi for familiar and unfamiliar melodies at early testing times. Performance rates at 09 h were predicted by differences in participants’ alertness and musical training; these differences were not explained by sleep patterns, chronotype, or cardiac activity. Individual differences in pianists’ performance tempo were consistent across testing sessions: participants with a faster tempo at 09 h maintained a faster tempo at later testing sessions. Cardiac measures at early testing times indicated increased heart rates and more predictable cardiac dynamics during music performance than baseline rest, and during performances of unfamiliar melodies than familiar melodies. These findings provide the first evidence of cardiac dynamics that are unique to music performance contexts.

Highlights

  • The ways in which musical behaviors interact with human cognition and action have been of great interest to psychologists

  • To test whether the stability of music performance changed over the day, the same ANOVA was conducted on mean Coefficients of Variation (CV)

  • This study examined time-of-day effects on musicians’ performance tempo for simple melodies, and whether circadian effects on physiology could account for individual differences in performance tempo

Read more

Summary

Introduction

The ways in which musical behaviors interact with human cognition and action have been of great interest to psychologists. Models of musical rhythm perception have posited networks of electrophysiological activity, based on populations of neuronal oscillators that fire in synchrony with musical rhythms (Large et al, 2015); these proposals suggest a tight link between musical behaviors and physiological activity. Several studies have focused on the effects of music perception on physiological measures such as heart rate and heart rate variability (see Koelsch and Jäncke, 2015 for a review). Less is known about influences of music performance on physiological processes that underlie cognition and action. We report an investigation of musicians’ melody performances measured over a 12-h day and subsequent changes in the performers’ physiological activity.

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.