Abstract

Rodents are sensitive to the emotional state of conspecifics. While the presence of affiliative social partners mitigates the physiological response to stressors (buffering), the partners of stressed individuals show behavioral and endocrine changes indicating that stress parameters can be transmitted across the group members (contagion). In this study, we investigated the social contagion/buffering phenomena in behavior and neuroendocrine mechanisms after exposure to chronic stress, in groups of rats living in the PhenoWorld (PhW). Three groups were tested (8 stressed rats, 8 unstressed rats, and a mixed group with 4 and 4) and these were analyzed under 4 conditions: stressed (pure stress group, n = 8), unstressed (naive control group, n = 8), stressed from mixed group (stressed companion group, n = 8), unstressed from mixed group (unstressed companion group, n = 8. While naive control animals remained undisturbed, pure stress group animals were all exposed to stress. Half of the animals under the mixed-treatment condition were exposed to stress (stressed companion group) and cohabitated with their unstressed partners (unstressed companion group). We confirmed the well-established chronic unpredictable stress (CUS) effects in physiological, behavioral, and neuroendocrine endpoints; body weight gain, open arm entries and time in EPM, and oxytocin receptor expression levels in the amygdala decreased by stress exposure, whereas adrenal weight was increased by stress. Furthermore, we found that playing, rearing and solitary resting behaviors decreased, whereas huddling behavior increased by CUS. In addition, we detected significant increases (stress-buffering) in body weight gain and huddling behaviors between pure stress and stress companion animals, and significant stress contagion effects in emotional behavior and oxytocin receptor expression levels between naive control and control companion groups. Hence, we demonstrate buffering and contagion effects were evident in physiological parameters, emotional behaviors, and social home-cage behaviors of rats and we suggest a possible mediation of these effects by oxytocin neurotransmission. In conclusion, the results herein suggest that the stress status of animals living in the same housing environment influences the behavior of the group.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call