Abstract
There is large area of saline abandoned and low-yielding land distributed in coastal zone in the world. Soil salinity which inhibits plant growth and decreases crop yield is a serious and chronic problem for agricultural production. Improving plant salt tolerance is a feasible way to solve this problem. Plant physiological and biochemical responses under salinity stress become a hot issue at present, because it can provide insights into how plants may be modified to become more tolerant. It is generally known that the negative effects of soil salinity on plants are ascribed to ion toxicity, oxidative stress and osmotic stress, and great progress has been made in the study on molecular and physiological mechanisms of plant salinity tolerance in recent years. However, the present knowledge is not easily applied in the agronomy research under field environment. In this review, we simplified the physiological adaptive mechanisms in plants grown in saline soil and put forward a practical procedure for discerning physiological status and responses. In our opinion, this procedure consists of two steps. First, negative effects of salt stress are evaluated by the changes in biomass, crop yield and photosynthesis. Second, the underlying reasons are analyzed from osmotic regulation, antioxidant response and ion homeostasis. Photosynthesis is a good indicator of the harmful effects of saline soil on plants because of its close relation with crop yield and high sensitivity to environmental stress. Particularly, chlorophyll a fluorescence transient has been accepted as a reliable, sensitive and convenient tool in photosynthesis research in recent years, and it can facilitate and enrich photosynthetic research under field environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.