Abstract

The force-velocity characteristics of skeletal muscle are such that maximal force is inversely related to the velocity of shortening. This relationship has been observed using isolated muscle preparations and intact muscle groups (e.g. knee extensors). Isokinetic dynamometry has revealed some specific physiological adaptations to different velocities of training: an increase in torque and power that are greater at or near the velocity of training; a transfer of torque gains to slower and faster angular velocities after intermediate velocity resistance training; increases in maximal oxygen consumption and cardiac output in response to circuit training; increases in anaerobic power output; changes in skeletal muscle size and changes in myofibrillar ATPase activity; and new applications for rehabilitation of muscular and ligamentous injuries, and post-coronary patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.