Abstract

Brain glycogen is localized almost exclusively to glia, where it undergoes continuous utilization and resynthesis. We have shown that glycogen utilization increases during tactile stimulation of the rat face and vibrissae. Conversely, decreased neuronal activity during hibernation and anesthesia is accompanied by a marked increase in brain glycogen content. These observations support a link between neuronal activity and glial glycogen metabolism. The energetics of glycogen metabolism suggest that glial glycogen is mobilized to meet increased metabolic demands of glia rather than to serve as a substrate for neuronal activity. An advantage to the use of glycogen may be the potentially faster generation of ATP from glycogen than from glucose. Alternatively, glycogen could be utilized if glucose supply is transiently insufficient during the onset of increased metabolic activity. Brain glycogen may have a dynamic role as a buffer between the abrupt increases in focal metabolic demands that occur during normal brain activity and the compensatory changes in focal cerebral blood flow or oxidative metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.