Abstract

Contemporary paradigm of peripheral and intracranial vascular hemodynamics considers physiologic blood flow to be laminar. Transition to turbulence is considered as a driving factor for numerous diseases such as atherosclerosis, stenosis and aneurysm. Recently, turbulent flow patterns were detected in intracranial aneurysm at Reynolds number below 400 both in vitro and in silico. Blood flow is multiharmonic with considerable frequency spectra and its transition to turbulence cannot be characterized by the current transition theory of monoharmonic pulsatile flow. Thus, we decided to explore the origins of such long-standing assumption of physiologic blood flow laminarity. Here, we hypothesize that the inherited dynamics of blood flow in main arteries dictate the existence of turbulence in physiologic conditions. To illustrate our hypothesis, we have used methods and tools from chaos theory, hydrodynamic stability theory and fluid dynamics to explore the existence of turbulence in physiologic blood flow. Our investigation shows that blood flow, both as described by the Navier–Stokes equation and in vivo, exhibits three major characteristics of turbulence. Womersley’s exact solution of the Navier–Stokes equation has been used with the flow waveforms from HaeMod database, to offer reproducible evidence for our findings, as well as evidence from Doppler ultrasound measurements from healthy volunteers who are some of the authors. We evidently show that physiologic blood flow is: (1) sensitive to initial conditions, (2) in global hydrodynamic instability and (3) undergoes kinetic energy cascade of non-Kolmogorov type. We propose a novel modification of the theory of vascular hemodynamics that calls for rethinking the hemodynamic–biologic links that govern physiologic and pathologic processes.

Highlights

  • Contemporary paradigm of peripheral and intracranial vascular hemodynamics considers physiologic blood flow to be laminar

  • Researchers have assumed, based on Womersley flow model (WFM), that blood flow is essentially laminar, and transition to turbulence shifts the blood hemodynamics leading to the initiation of vascular diseases such as brain aneurysms or a­ therosclerosis[8,9]

  • Laminar flow is a special case in which the nonlinearity of Navier–Stokes equation is far less than such of the general case of turbulent flow

Read more

Summary

Introduction

Contemporary paradigm of peripheral and intracranial vascular hemodynamics considers physiologic blood flow to be laminar. Researchers have assumed, based on WFM, that blood flow is essentially laminar, and transition to turbulence (or presence of disturbed flow, which is a poorly defined hemodynamic term often used in medical research) shifts the blood hemodynamics leading to the initiation of vascular diseases such as brain aneurysms or a­ therosclerosis[8,9]. Such disease association is attributed to the mechano-sensing properties of endothelial cells that make them responsive to various flow p­ roperties[10]. The kinetic energy cascade from both datasets was analyzed in space and frequency domains

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.