Abstract

The growth directions and elongation rates of axile roots that compose the framework of an upland rice root system are quite varied. The objective of this study was to elucidate the direction of growth of the axile roots relative to their root diameter and the structural characteristics of their root caps. The relationships of photosynthate translocation to either the growth direction or the elongation rate of the axile roots were also examined using a stable isotope 13G. The growth direction of the axile roots significantly correlated with their diameter. The axile roots with a relatively large diameter tended to elongate vertically in the vegetative stage, though the regression coefficients varied according to phyllochrons. The roots that emerged at the reproductive stage elongated horizontally relative to the large diameter. In the roots that emerged at the same phyllochrons, the prophyll roots elongated more vertically than the proximal roots did. The axile roots that elongated vertically formed wide columellae and large amyloplasts in the cap cells. The highest 13C abundance in the axile root tip zone was found at 21 hrs after feeding 13CO2. The length of the apical unbranched zone behind the axile root tip positively correlated with the 13C abundance in the root apical zones during the first 21 hrs after feeding, indicating that the roots that elongated fast would be superior in photosynthate intake in the apical zone. The axile roots that elongated vertically took in more photosynthate in their apical zones, however, the relationship was not particularly close.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call