Abstract

Thermal stress is a major abiotic stress in wheat and ishighly complex in mechanism. A large area in northwestern plain zones (NWPZ), which is the wheat bowl of India is affected by heat stress. Climate change also causes anabrupt increase in temperature at different growth stages of wheat. Thus, wiser selection of stress tolerant varieties is an important strategy to combat the climate change effect. The present study aims for physiological and biochemical screening of timely sown NWPZ wheat varieties (WB2, HD3086, DBW88, DPW621-50, DBW17, HD2967 and PBW550) of India for their thermal stress tolerance along with heat tolerant (RAJ3765) and susceptible checks (RAJ4014) at seedling stage. The experiment was conducted in completely randomized design under controlled laboratory condition and heat stress was induced at 37°C at seedling stage. Later different physio-biochemical traits were studied in both control and stress seedlings. All traits exhibited significant variations among genotypes under heat stress condition. Root and shoot weight, relative water content, chlorophyll content index and chlorophyll fluorescence reduced significantly, whereas membrane leakage, osmotic potential, catalase, ascorbate peroxidase, guaiacol peroxidase, malondialdehyde content and proline content were increased in stress plants. A tolerance matrix was prepared based on stress response of the genotypes for each trait and a final tolerance score was given to each genotype. Based on this tolerance matrix, DBW88 and PBW550 were identified as tolerant, DPW621-50, DBW17 and HD2967 as moderately susceptible and HD3086 and WB2 as susceptible to heat stress. Earlier studies parade that seedling level stress tolerance has high correlation with adult level stress tolerance under field condition in wheat. Hence, this study helps in wiser selection of varieties for sowing in NWPZ based on weather forecast of the location for creating varietal mosaic in context of climate change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.