Abstract

This paper proposes a novel physics-informed machine learning method to build grey-box model (GBM) predicting ship speed for ocean crossing ships. In this method, the expected ship speed in calm water is first modeled by the physics-informed neural networks (PINNs) based on speed-power model tests. Then the eXtreme Gradient Boosting (XGBoost) machine learning algorithm is integrated to estimate ship speed reduction under actual weather conditions. The proposed GBM has been compared against the traditional black-box model (BBM) using performance monitoring data from two ships. The results show that when the amount of data is sufficient for modeling, the GBM can increase the accuracy of speed prediction by about 30%. When data volume is limited, the GBM can also significantly improve the prediction results. Finally, the GBM is validated by checking its implementation for the ETA predictions of cross-Pacific or North Atlantic voyages. The highest cumulative error of sailing time estimated by the GBM is 5 h among all the study cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.