Abstract

This paper establishes a physics-based simulation framework for steering a magnetically actuated guidewire based on the linear elasticity and dipoles theories. Interaction wrenches resulting from an external magnetic field and embedded magnets in a continuum rod, i.e., guidewire, serves as actuators for steering. In the presented framework, a simplified integration scheme based on the finite-volume method is employed to model guidewire using the linear elasticity theory and forces resulting from the interference of magnetic fields to provide a rapid model reconstruction. Furthermore, orienting the external magnetic field is employed to steer a guidewire into a constrained environment. Finally, simulations illustrate the approach performance on a soft rod where an external magnetic field is orientated to form the desired shape for a continuum rod and steer it within an environment. The results open up possibilities to construct a rapid model for continuum manipulators in practice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call