Abstract

The purpose of this paper is to present a physics-based electro-thermal Saber®* model and parameter extraction sequence for high-voltage SiC buffer layer n-channel insulated gate bipolar transistors (IGBTs). This model was developed by modifying and extending the previously developed physics-based silicon buffer layer IGBT electrothermal model and IGBT Model Parameter extrACtion Tools (IMPACT) to include SiC specific device and material properties. The validated simulation results in this paper demonstrate that the new electro-thermal Saber® model for high-voltage SiC buffer layer n-channel IGBTs can be used to describe the static and dynamic behaviors for a wide range of device designs and circuit conditions for IGBTs with blocking voltages from 12 kV to 20 kV. The new physics-based model provides both device and circuit predictive capability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.