Abstract

AbstractWe discuss techniques for efficient local detection of silent data corruption in parallel scientific computations, leveraging physical quantities such as momentum and energy that may be conserved by discretized PDEs. The conserved quantities are analogous to “algorithm-based fault tolerance” checksums for linear algebra but, due to their physical foundation, are applicable to both linear and nonlinear equations and have efficient local updates based on fluxes between subdomains. These physics-based checksums enable precise intermittent detection of errors and recovery by rollback to a checkpoint, with very low overhead when errors are rare. We present applications to both explicit hyperbolic and iterative elliptic (unstructured finite-element) solvers with injected memory bit flips.KeywordsSilent errorsPartial differential equationsLinear algebraAlgorithm-based fault toleranceCheckpoint/restart

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.