Abstract

The advent of back-scattered laser beams for e±e-colliders will allow detailed studies of a large array of high energy γγ and γe collision processes with polarized beams. These include tests of electroweak theory in photon-photon annihilation such as γγ → W+W-, γγ → Higgs bosons, and higher-order loop processes, such as γγ → γγ, Zγ, H0Z0and ZZ. Methods for measuring the anomalous magnetic and quadrupole moments of the W and Z gauge bosons to high precision in polarized electron-photon and photon-photon collisions are discussed. Since each photon can be resolved into a W+W-pair, high energy photon-photon collisions can also provide a remarkably background-free laboratory for studying WW collisions and annihilation. I also review high energy γγ and eγ tests of quantum chromodynamics, including the production of two gluon jets in photon-photon collisions, deeply virtual Compton scattering on a photon target, and leading-twist single-spin asymmetries for a photon polarized normal to a production plane. Exclusive hadron production processes in photon-photon collisions provide important tests of QCD at the amplitude level, particularly as measures of hadron distribution amplitudes which are also important for the analysis of exclusive semi-leptonic and two-body hadronic B-decays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.