Abstract

Cultivating algae at high densities in thin photobioreactors engenders time scales for random cell motion that approach photosynthetic rate-limiting time scales. This synchronization allows bioproductivity above that achieved with conventional strategies. We show that a diffusion model for cell motion (1) accounts for high bioproductivity at irradiance values previously deemed restricted by photoinhibition, (2) predicts the existence of optimal culture densities and their dependence on irradiance, consistent with available data, (3) accounts for the observed degree to which mixing improves bioproductivity, and (4) provides an estimate of effective cell diffusion coefficients, in accord with independent hydrodynamic estimates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.