Abstract

The transfer of electric charges and mass in the crystal lattice of an oxide is analyzed. The massand electrotransport in oxides are shown to be caused by ionic displacements; to be interrelated; and to occur via scattering of charged ionic vacancies, which form at the surface of contact of oxide with a reducing or oxidizing medium. A general physical model is developed to describe metal reduction and oxidation. This model is based on the universal principle of equality of the number of elementary charge carriers, namely, electrons and protons, in any phase and the contingency of mass- and electrotransport in an ionic crystal lattice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.